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Computing Min and Max Scorings for
Two-Sample Ordinal Data

Lyn R. Whitaker, Naval Postgraduate School, Monterey, CA
Michael D. Whitaker, CTB/McGraw-Hill, Monterey, CA

ABSTRACT

Ordinal response variables often occur in practice. For example, in clinical trials a
subject’s response to a drug regime might be categorized as negative, none, fair, or gbod.
There are several common approaches to analyzing two-sample ordinal response data.
These procedures applied to the same data can lead to contradictory conclusions. In an
attempt to reconcile contradictory results and provide guidance to the practitioner,
Kimledorf, Sampson and Whitaker (1992) propose an alternative approach. They find the
scores which when assigned to the levels of the ordinal response variable maximize a two-
sample test statistic and the scores that minimize that same statistic. Since many of the
two-sample statistics are related by monotonic transformations, these extreme scores are
in fact extreme scores for several test statistics. Both minimized and maximized test
statistics falling into the rejection region clearly indicate a difference between the two
populations or treatments. On the other hand if neither of the two extreme statistics fall in
the rejection region then no matter what scores are used there will be no significant
difference in the two populations. In this paper we review the KSW procedure and its
implementation in SAS® software.

1. INTRODUCTION

Ordinal response variables often occur in practice. For example, in clinical trials a
subject’s response to a drug regime might be categorized as negative, none, fair, or good.
There are several common approaches to analyzing two-sample ordinal response data.
Among them are assigning arbitrary scores to the levels of the ordinal variable and then
using a t-test, nonparametric approaches such as Wilcoxen-Mann-Whitney test and the




Cochran-Mantel-Haensel test (Mantel (1963)) and the generalized linear model approach
with ordinal response variables (McCullagh and Nelder (1983)). It is common for
practitioners to try several of these tests and then, when results are contradictory, wonder
which to use. Kimledorf, Sampson and Whitaker (1992) propose an alternative approach.
They find the scores which when assigned to the levels of the ordinal response variable
maximize a two-sample test statistic and the scores that minimize that same statistic. Since
many of the two-sample statistics are related by monotonic transformations, these extreme
scores can in fact be used to find extreme test statistics for several different two-sample
tests.

Let x1 <x3 < ... <xg (X1 # Xx) be the nondecreasing scores assigned to the levels of an
ordinal response variable. The KSW procedure encompasses several of the common
methods. The Wilcoxen-Mann-Whitney statistic is a special case of the two-éample
t-statistic with marginal midrank scores assigned to the xj, ..., xk (e.g., Conover and Iman
(1981)). The Cochran-Mantel-Haensel (CMH) statistic is usually calculated using uniform
or equal spacing scores for the xi, ..., xx, marginal mid-rank scores (ridits), or modified
ridit scores. The FREQ procedure allows the choice of these scores for calculating the
CMH statistic as well as arbitrary user-provided scores. In addition, both the signed CMH
statistic and the two-sample t-statistic are increasing functions of Pearson’s correlation
coefficient p(xy, ..., Xx) between the scores assigned to the ordinal variable and the binary
variable indicating whether the response is from Treatment 1 or not.

Thus, by finding the scores sy, ..., sy which maximize p(xy, ..., Xx) and the scores
t1, ..., tx which minimize p(xy, ..., Xx) among x; < X3 < ... < xx where X # X, we have also
found the maximum and minimum of the two-sample t-statistic and the CMH statistic. If
both of the extreme values of the statistic lie in the rejection region then it is clear that no
matter how the levels of the ordinal response are scored, the test statistic will be
significant. When both of the extreme values of the test statistic fail to lie in the rejection
region then the result is also clear, no matter what scores are assigned to the ordinal
response variable, the test statistics will always fail to reject the null hypotheses. In the
third case, when the scores straddle a critical value, the conclusion becomes more difficult
because some non-decreasing scores assigned to the data will result in rejecting the null
hypothesis and yet another assignment of scores will result in acceptance of the null
hypothesis.

In the next chapter we outline the KSW procedure for finding the minimum and
maximum scores and present a SAS macro used to implement this procedure. In Chapter 3
we give a numerical example and in Chapter 4 we provide a conclusion.



2. THE KSW PROCEDURE AND ITS IMPLEMENTATION

The SAS code is a single macro. This macro needs only base SAS software to run and
is implemented within a DATA step. The macro uses data in contingency table form, and
does all the computations needed to report the minimum and maximum scores and their
corresponding t-statistics, CMH statistics, and Pearson’s correlations. The complete code
is available from the authors.

The two-sample data with scores x; < x3 < ... < xgx where x; # xi assigned to the levels
of the ordinal response variable can be represented as:

TREATMENT | x; X2 e | Xg TOTAL
1] mp mp ves My m

1 ni m e | Dg n
TOTAL my +ny m + ny veo | M+ Ny N

Because correlation is scale and location invariant we can, without loss of generality
and for ease of use, optimize p(xi, ..., Xx) over scores x; =0<xp<...<xx=1. The
notion of stochastic ordering plays an important role in the computations. The empirical
distribution of Treatment 1 is said to be stochastically greater than that of Treatment 0 if

Mj+ ... +n)/n = (mj + ... + m/m 2.1
for j=2,...,k. If the inequality (2.1) is reversed then Treatment 0 is said to be
stochastically greater than Treatment 1. If neither hold, then the empirical distributions
from the two treatments are stochastically incomparable. For simplicity, we compute the
scores Ssi, ..., Sk that maximize and the scores ty, ..., ty that minimize in. three different

cases:
Case 1, Treatment 0 data is stochastically greater than Treatment 1 data,
Case 2, Treatment 1 data is stochastically greater than Treatment 0 data,
Case 3, Treatment 0 and Treatment 1 data are stochastically incomparable.

Thus, the first step in computation is to decide in which of the three cases the data fall.

If the data fall into case 1, we find the maximum scores, s, ..., Sk, by first finding the
isotonic regression yy, ..., yx of nj/(m; + n;) with weights (m; + n;). There are several
algorithms for computing the isotonic regression. In the SAS macro, we use the Pool
Adjacent Violators Algorithm (PAVA) (see Robertson, Dykstra and Wright (1988)). The
PAVA code is given in the Appendix. The scores s;, ..., sk are computed by re-scaling the
isotonic regression as s; = (yj — y1)/(yx — y1)- The minimum scores ty, ..., tx are found by
computing p(Xy, ..., Xx) for the k-2 scores of the form O0=x;=...=x; and




1l =x@G+1y=...=x¢ for j=2,...,k-1 and finding the one that gives the smallest p
X1y -0y XK)-

If the data fall into case 2 then finding the maximum scores sy, ..., si is similar to
finding the minimum scores in case 1, i.e. the scores that maximize p(xy, ..., X) among
scores of the form 0=x;=... =xj and 1=xGey=...=x¢ for j=2,...,k-1. The
minimum score ty, ..., tg are found as are the maximum score in case 1. Compute the
isotonic regression yi, ..., yx of my/(m; + n;) with weights (m; + n;) and then re-scale to get
ti=Fi-y)/yx—yp)fori=1,.. k.

For case 3, the scores sy, ..., sx are computed as in casel and the scores ty, ..., t are
computed as in case 2. The macro KSW, implementing this procedure is:

%*********************************************.
%* Macro :KSW

%* Author:Michael Whitaker
%* Input: n_lev = The number of ordinal levels;

’
i
’

%* statistics will always be returned
%* by the macro.
%*

%****1\'****************************************.

E treat0=The freq dist for treatment 0;
E* treatl=The freq dist for treatment 1;
%* Output:Minscore= Scores that give min r ;
g* Maxscore= Scores that give max r ;
F* Min_t= Min t-statistic ;
% * Max_t= Max t-statistic ;
g * Min_r= Min Pearson corr ;
E Max_r= Max Pearson corr ;
& * Min_CMH= Min CMH Statistic ;
% * Max_CMH= Max CMH Statistic :
%* Required Macros : PAV, Stoc_ord, Cov ;
%* Required Procs : None ;
%* Comments ;
E* variables with scores, t, r and CMH ;

’
‘
’
’
’

gmacro Ksw(n_lev=,treat0O=,treatl=,minscore=_min_scr_,
maxscore=_max_scr_,min_r=_min_r_,
max_r=_max_r_,min_t=_min_t_,
maxX_t=_max_t_,min_cmh=_min_c_,
max_cmh=_max_c_) ;
%*;
%* Define the work arrays;
3*;
'~ array _w_ {&n_lev} _TEMPCRARY_;
array _t0_ {&n_lev} _TEMPORARY_
(0 %do j = 1 %to %eval(&n_lev-1); ,0 %end;);
array _tl_ {&n_lev} _TEMPORARY_
(0 %do j = 1 %to %eval(&n_lev-1); ,0 %end;);
array _y0_ {&n_lev} _TEMPORARY_;
array _yl_ {&n_lev} _TEMPORARY_;
array _z0_ {%eval(&n_lev-1),&n_lev} _TEMPORARY_;
array _zl_ {%eval{&n_lev-1),&n_lev} _TEMPORARY_;
array _r0_ {%eval(&n_lev-1)} _temporary_;
array _rl_ {%eval(an_lev-1)} _temporary_;
array _cmhO_ {%eval(&n_lev-1)} _temporary_;
array _cmhl_ {%eval(&n_lev-1)} _temporary_;
array _sttO_ {%eval(&n_lev-1)} _temporary_;
array _sttl_ {%eval(&n_lev-1)} _temporary_;



g*;
%* Check for Stochastic Ordering of the Empirical;

g* Distributions. The result is placed in
$* the variable _case_;
&*;
¥stoc_ord(poplO=&treat0, popl=&treatl, case=_case_);
&*;
g* Casel: For max, use Isotonic Regression;
%> For min, search over scores of 0s & 1ls;
g* Case2: For max. search over scores of 0s & 1s;
%* For min, use Isotonic Regression;
%*  Case3: For both max and min, use Isotonic;
%* Regression;
*;
select (_case_);
when (1)
do;
g*;
%* create the yis from the empirical distribution;
%*;
do _ksw_Jj_

1 to dim{&treatl);
) = (&treatO(_ksw_j_)+

&treatl (_ksw_j_));
&treatO(_ksw_3j_)/ )
(&treat0(_ksw_j_)+&treatl (_ksw_j_));

_w_{_ ksw_3j_

—yO0_(_ksw_j_)

1l

end;
&*;
%* find the isotonic regression;
&*;
$pav (max_els=&n_lev,array=_y0_,weights=_w_) ;
&*;
%* Re-scale to include 0 and 1;
%*;
do _ksw_j_ =1 to dim{_y0_);
_t0_(_ksw_j_) = (y0_(_ksw_j_) - _y0_(1))/
(y0_(&n_lev) - _y0_(1));
end;
&*;

%* Compute the correlation, the t, and
%* CMH for those scores;

$*;

%$cor (popl=&treat0, popl=&treatl,
score=_t0_, r=&min_r,
t=&min_t,cmh=&min_cmh) ;

&*;
%* copy these values into the output variables;
F*;
~do _ksw_k_ = 1 to dim(&minscore);
&minscore(_ksw_k_) = _t0_(_ksw_k_);
end;
&*;

[}

%* This finishes the minimum score. ;
%* Now, construct scores of the form ;
g * 0=x(1),..,x(j) and 1=x(j+1).,..,x(k) for ;

g* j=2,...k-1 ;
g then pick the one that gives the minimum ;
g* correlation ;
%*;
g * construct a score;
&*;
do _ksw_j_ = dim(&treat0) to 2 by -1;
do _ksw_k_ = _ksw_j_ to dim(&treatl);
_t1_(_ksw_k_) = 1;
end;




%*;
%* compute the correlation,
E*;

E*;
%* copy the score and statistics into an

%cor (popO=&treatl,

scores=
cmh=_cmh_) ;

_tl_,

r=_r_,

%* array for later interrogation;

t and CMH;

popl=&treatl,
t=_stud_t

p—

i

ksw_Kk_):

_ksw_k

&*;
_rl_(_ksw_j_-1) = _r_;
_sttl_(_ksw_j_-1) = _stud_t_;
_cmhl_(_ksw_j_-1) = _cmh_;
do _ksw_k_ =1 to dim(_t0_);
2zl _(_ksw_j_-1,_ksw_k_) = _tl_(_
end;
end;
g*;
%* find the score that gives the max correlation;
&*;
_max_r_ = -1;
do _ksw_k_ = 1 to dim{_rl_);
if (_max_r_ <= _rl_(_ksw_k_)) then
do;
_max_r_ = _rl_(_ksw_K_);
_in_max_ = _ksw_Kk_;
end;
end;
&*;
%* copy these values to the output variables;
%*;
do _ksw_k_ = 1 to dim{&maxscore);
&maxscore(_ksw_k_) = _zl_(_in_max_
end;
&max_r = _rl_(_in_max_);
&max_t = _sttl0_(_in_max_);
&max_cmh = _cmh0_{(_in_max_);
end;
when (2)
do;
E*;

%* the following is the same as above with the ;
%* roles of the distributions reversed;

&*;

do _ksw
_w_(

i
_ksw

_J_

1 to
)

Y1_(_ksw_j_) =

end;

dim(&trea

tl);

(streat0(_ksw 3 )+

&treatl (_
&treatl(
(streat?(
&treatl(

kKsw_j
Ksw,

_ks;
_ksw_

J-
J_

)

)i

/
)+
)

’

1

%pav (max_els=&n_lev,array=_yl_,weights=_w_);

do _KkKsw_j_ =
_tl_(_ksw_j
(1))
end;

1 to dim(_yl_);

) =

Iy

%cor (popO=&treatl,

score=_¢t1_,

(_yl_

(_ksw_j
1_(&n_1lev)

=)
- yi_

popl=&treatl,

r=&max_r,

t=&max_t, cmh=&max_cmh).;

do _ksw_k_
&maxscore (

1 to dim(&maxscore);
_ksw_k_}) = _tl1_

(1))

(_ksw_k_

)



end;

do _ksw_j_ = dim(&treat0) to 2 by -1;
do _ksw_k_ = _ksw_j_ to dim(&treat);
_t0_(_ksw_k_) = 1;
end;

%$cor (popl=&treat,popl=&treatl,
score=_t0_,r=_r_,
t=_stud_t_,cmh=_cmh_);

_r0_(_ksw_j_-1) = _r_;
_stt0_(_ksw_j_-1) = _stud_t_;
_cmh0_(_ksw_j_-1) = _cmh_;

do _ksw_k_ = 1 to dim(_t0_);

_20_(_ksw_j_-1,_ksw_k_) = _tO0_(_ksw_k_);
end;
end;
_min_r_ = 1;
do _ksw_k_ =1 to dim{_r0_);
if ((min_r_ >= _r0_(_ksw_k_)) then
do;
_min_r_ = _r0_(_ksw_k_);
_in_min_ = _ksw_k_;
end;
end;
do _ksw_k_ = 1 to dim(&minscore);
&minscore(_ksw_k_) = _z0_{(_in_min_,_ksw_Kk_);
end;
gmin_r = _r0_(_in_min_);
&min_t = _stt0_(_in_min_);
&min_cmh = _cmhO_(_in_min_);
end;
when (3)
do;

&*;
%* Create the y sub i from the empirical distributions;
$*;
do _ksw_j_ = 1 to dim(&treat0); .
_w_(_ksw_j_) = (&treat0(_ksw_j_)+&treatl(_ksw_j_));
_yO0_(_ksw_j_) =
&treatO(_ksw_j_)/
(&treat0(_ksw_j_)+&treatl(_ksw_j_));
v1_(_ksw_j_) = &treatl(_ksw_j_)/
(&treat0(_ksw_j_)+&treatl(_ksw_j_));

end;
&*;
%* Find the isotonic regression;
$*;
%pav (max_els=&n_lev,array=_y0_,weights=_w_) ;
%pav (max_els=&n_lev,array=_yl_,weights=_w_);
F*;
%* Re-scale to include 0 and 1;
%*;
do _ksw_j_ =1 to dim(_y0_);
t0_(_ksw_j_) = (y0_(_ksw_j_) -
YO_ (1)) /(y0_(&n_lev) - _y0_(1));
tl_(ksw_j_) = (yl_(_ksw_j_)} -
v1 (1)) /(yl_(&n_lev) - _yl _(1));
end;
g*;

%* compute the correlation, t and CMH for those scores;
%*;




%cor (popl=&treatl, popl=&treatl,
score=_t0_, r=&min_r,
t=&min_t,cmh=&min_cmh) ;

%cor (popO=&treatl, popl=&treatl,
score=_t1l_, r=&max_r,
t=&max_t,cmh=&max_cmh) ;

%*;
%* copy these values into the output variables;
&*;
do _ksw_j_ = 1 to dim(&maxscore) ;
sminscore(_ksw_j_)} = _tO0_(_ksw_3j_);
&maxscore(_ksw_j_) = _tl_(_ksw_j_);
end;

end;

end;

Drop _case_ _r_ _stud_t_
_cmh_ _ksw_Kk_
_ksw_j_ _in_max_
_in_min_;

gmend Ksw;

3. EXAMPLE
We illustrate this procedure with an example using data from Agresti (1984), where
two treatments are used to try to heal ulcer craters.

<2/3 22/3
Treatment | Larger | Healed | Healed | Healed
A 12 10 4 6
B 5 8 8 11

The DATA step implementing the KSW procedure for this data is:

options sasautos='c:\sugi';
data agresti;
infile cards;
array treat0 {*} al - a4;
array treatl {(*} bl - b4;
array minscr {4};
array maxscr {4};
input al - a4;
input bl - b4;
$ksw(treatO=treat0,treatl=treatl,
n_lev=4,min_t=min_t,max_t=max_t,
maxscore=maxscr,minscore=minscr) ;
put minscr(*)= Min_t=;
put maxscr(*)= max_t=;

cards;
12 10 4 6
5 8 8 11
run;

The log for this example is:

NOTE: Copyright (c) 1989-1993 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software Release 6.10 TS019



Licensed to CTB/MCGRAW-HILL, Site 0009289001.

NOTE: The SAS System for Microsoft Windows, Release 6.10 Limited Production
1 options sasautos='c:\sugi';

2 data agresti;

3 infile cards;

4  array treatQ {*} al - a4;

S  array treatl {*} bl - b4;

6  array minscr {4};

7  array maxscr {4};

8 inputal - a4;

9 inputbl - b4;

10  %ksw(treatO=treat0,treatl=treatl,n_lev=4,
11 min_t=min_t,max_t=max_t,

12 maxscore=maxscr,minscore=minscr);
13 put minscr(*)= Min_t=;

14  put maxscr(*)= max_t=;

15 cards;

MINSCR1=0 MINSCR2=0 MINSCR3=0 MINSCR4=1 MIN_T=1.4151268421
MAXSCR1=0 MAXSCR2=0.4163545568 MAXSCR3=1 MAXSCR4=1
MAX_T=2.508647573

NOTE: The data set WORK.AGRESTI has 1 observations and 22 variables.
NOTE: The DATA statement used 6.7 seconds.

18 ;

19 run;

Note that there are 22 variables in this example. Eight are for the frequencies, 8 are the
extreme scores, 2 are t-statistics, 2 are CMH statistics, and 2 are Pearson’s correlations.
The empirical distribution of ulcer crater size for Treatment A is stochastically less
than that for Treatment B. Thus, the minimum scores are found by searching through the
scores of 0’s and 1’s and the maximum scores are found using the PAVA. The resulting
output gives the minimum score t; =t = t3 =0 and t4 = 1 with minimum t of 1.42 and the
maximum score of s; =0, s; =.4164, s3 =54 =1 with a corresponding maximum t of
2.508. There are no scores which will accept the alternative that Treatment A is better
than Treatment B. It is clear that there are some scores which lead to rejection of the null
hypothesis that the two treatments are the same and that there are some scores that fail to
reject the null hypothesis in favor of a difference in the two treatments (or that Treatment
B is better than Treatment A). This straddling situation requires the practitioner to re-
evaluate what differences in the treatments are of practical significance. Upon closer




inspection of the minimum and maximum scores, we see that if the practitioner is
interested in drugs that show any type of improvement regardless of the degree of
improvement then the two treatments are very similar. On the other hand, if the
practitioner is really interested in completely or almost completely healing ulcer craters
then this data presents evidence that Treatment B is better than Treatment A.

4. CONCLUSION

The KSW procedure gives an approach for analyzing two-sample ordinal data. Most
methods either explicitly or tacitly assign scores to the levels of the ordinal variable. For
true ordinal variables there is no one underlying score that adequately describes the levels.
Thus, practitioners often try different scores or different methods, often with conflicting
results. KSW helps reconcile these differences by finding the scores which maximize and
the scores which minimize both the CMH and the t-statistic. In this paper, we implement
the KSW procedure. To enhance the portability of the KSW macro, the code is written
using only base SAS software.

The KSW statistics should not be thought of as test statistics. They are extreme values
over a set of test statistics generated from all possible ordinal scorings (including scorings
that pool levels of the ordinal variable). Thus, we have purposely left p-values out of the
KSW macro. As was seen in the ulcer crater example, even though there is no distribution
theory for the KSW procedure, both the extreme t-statistics and the corresponding scores
provide a deeper insight into the data than any one of the usual methods used alone.

The more general problem of finding extreme scores for ordinal response variables in
an ANOVA setting is treated in Gautam (1991). Streitberg and Roehmel (1988) give a
method for computing bounds for p-values for a class of permutation tests in the two-
sample setting. They do not give extreme scores and their algorithm is implemented in
TESTIMATE. |
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6. APPENDIX

%****7\'****************************************
%* Macro :PAV

%$* Author:Michael Whitaker

%* Input: max_els = The max numb of elements

%* array = The array of data
g * weights= Weights used in the
E* regression

I
l
;
I
I
H
I
%* Output:array = the same array as above ;
%* Required Macros : None ;
I
I
!
l'
I
;
;

%* Required Procs : None

%* Comments :

§* This will perform an Isotonic regression;
g* in one dimension. The array will

&* hold the processed data

%*

%*********************************************
%$macro Pav(max_els=,Array=,Weights=);

%global index;

%$1if %quote(&index)=

%then

%$let index = 1;

%else

%let index = %eval (&index+1);
%let pooled = _pool&index._;
%let parray = _parr&index._;




%let pwghts = _pwgt&index._;
array &pooled (&max_els) _temporary_;
array &parray (&max_els) _temporary_;
array &pwghts (&max_els) _temporary_;
If dim{(&array) = 1 then Go to epav&index;
do _pav_j_ = 1 to dim(&array);
&pooled(_pav_j_) 0;
&parray (_pav_j_) 0;
&pwghts (_pav_j_) 0;
end;
&parray (1)
spwghts (1)
_pav_j_ = 1;
Do _pav_i_ = 2
If (&parray(
then
do;
_plwght_ = &pwghts(_pav_j_) + &weights(_pav_i_);
_plval_ = ((&parray(_pav_j_)*&pwghts(_pav_j_)) +
(sarray (_pav_i_) *&weights(_pav_i_)))/
_plwght_;
&pooled(_pav_i_) = 1;
if _pav_j_ » 1 then
do;
_pav_j_ = _pav_j_ - 1;
_pav_jj_ = _pav_i_;
do while((&parray{_pav_j_) > _plval_) &
(_pav_i_ >= 1));
_tplval_ = _plval_;
_tplwgt_ = _plwght_;
do until (&pooled(_pav_jj_)):
_pav_ji_ = _pav_ji_ - 1;
end; /* do until */
_plwght_ = &pwghts(_pav_j_) + _tplwgt_;
_plval_ = ((&parray(_pav_j_) *&pwghts(_pav_j_)) +
(_tplval_*_tplwgt_))/_plwght_;
spooled(_pav_jj_) = 1:
_pav_j_ = _pav_j_ - 1;
end; /* do while */
_pav_j_ = _pav_j_ + 1;
end; /* If _pav_j_ > 1 */
&parray (_pav_j_) = _plval_;
&pwghts (_pav_j_) = _plwght_;
end; /* (&parray{(_pav_i_) > &array(_pav_i_)) then */
else '
do;
_pav_j_ = _pav_j_ + 1;
&parray (_pav_j_) &array (_pav_i_);
&pwghts (_pav_j_) swelights(_pav_i_);

nonwn

&array (l);
&welights (1) ;

to dim(&array);
_pav_j_) > &array{_pav_i_))

o

end;
end; /* _pav_i_ = 2 to dim(&array); */

&array(l) = &parray(l);
_pav_j_ = 1;
_pav_jj_ = 1;
do _pav_j_ = 2 to dim(&array);

if ~&pooled(_pav_j_) then _pav_jj_ = _pav_jj_ + 1;

sarray(_pav_j_) = &parray(_pav_3ij_):

end;
Epav&index:

drop _pav_j_ _pav_i_ _pav_jj_ _plval_ _plwght_ _tplval_ _tplwgt_;
%mend;

%*******************************;*************,.
%* Macro :Stoc_ord ;
%* Author:Michael Whitaker

’
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%* Input: pop0 The first freq dist ;
g * popl The second freqg dist ;
%* Output:case = the case (1, 2, or 3)
%* Required Macros : None

%* Required Procs : None ;
%* Comments : ;
g * This will check two empirical ;
%* probability distributions for ;
&* stochastic dominance. Case=1 is popl :
g* is dominate, case=2 is popl is ;
g * dominate, and case = 3 is neither ;
& * are dominate; ;
%*

%*********************************************I.
$macro Stoc_ord(popl0=, popl=, case=);
&case=.;
_sum_M_
_sum_N_
do _stoc_j_ = 1 to dim(&popl);
_sum_M = _sum_M_ + &popO{(_stoc_j_);
_sum_N_ = _sum_N_ + &popl{(_stoc_j_);
end;
_case_1_
_case_2_
Do _stoc_j_ 2
_psum_M_ = 0;
_psum_n_ = 0;
do _stoc_k__

0
0

-

to dim(&pop0) ;

_stoc_j_ to dim{&popl);

_pbsum_M_ = _psum_m_ + &popl{_stoc_k_);
_psum_n_ = _psum_n_ + &popl(_stoc_k_):
end;
Case_1_ = (_Case_1_ & ((_Psum_M_/_sum_m_) >= (_psum_n_ / _sum_n_)));
_Case_2_ = (_Case_2_ & ((_Psum_M_/_sum_m_) <= (_psum_n_ / _sum_n_)));
end;

if _case_1_ then &case=1;

else if _case_2_ then &case=2;

else &case=3;

drop _psum_m_ _psum_n_ _sum_m_ _sum_n_ _case_1_ _case_2_ _stoc_k_
_stoc_j_;

$mend stoc_ord;

%********************************************* .
%* Macro :cor

%* Author:Michael Whitaker

%* Input: pop0 = The first freq dist

g* popl = The second freq dist

&* score = the score to use :
%* OQutput: r= the correlation statistic ;
E* t= the Student t :
g* cmh= the cmh statistic ;
%* Required Macros : None ;
%* Required Procs : None ;
%$* Comments ;
&* This will copute the r, t and cmh for ;
&* pop0, popl and score H
%*

%********-k************************************;
$macro cor (popl=,popl=,score=,r=,cmh=,t=};
%put &cmh &r &t;

_tmx_ = 0;
_tnx_ = 0;
_tmnx2_ = 0;
_tm_ = 0;
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do _cor_k_ = 1 to dim(&pop0);

tmx_ _tmx_ + &pop0(_cor_k_)
* &score(_cor_k_);

_tnxXx_ = _tnX_ + &popl{_cor_k_)
* &scoref{_cor_Kk_);

_tmnx2_ = _tmnx2_ +

((&popl(_cor_k_) + &popl(_cor_k_)) *

&score(_cor_Kk_) ** 2);

_tm_ = _tm_ + &pop0(_cor_k_);

_tn_ = _tn_ + &popl{_cor_Kk_);:

end;

_tt_ = _tm_ + _tn_;

&r = sqgrt((_tt_-1)/_tt_) /
sgrt(_tt_-1) * sgrt(_tm_*_tn_) *

({(_tnx_/_tn_) - {(_tmx_/_tm_)) /
sart (_tmnx2_ - ((_tmx_ + _tnx_) ** 2 /_tt_));

&cmh = (_tt_-1) * &r ** 2;
&t = sqgrt(_tt_-2) * &r / sqrt(l - &r ** 2);
drop _cor_Kk_ _tm_ _tn_ _tt_
_tmxX_ _tnx_ _tmnx2_;
smend;

SAS is a registered trademark of SAS Institute Inc. in the USA and other countries. ®
indicates USA registration.
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